PROPERTIES OF ACIDS AND BASES

- Juices/Fruits
- Tart, sour, sharp taste
- They are electrolytes Conduct electricity
- React with Metals
- Common as aqueous and liquids

- **Cleaning products**
- Bitter tasting
- Slippery to the touch
- Common as Solids

Arrhenius

- Acids make H+ ions in aqueous solutions
- Bases make OH ions in solution

Bronsted-Lowry

- Acids donate protons
- Bases accept protons

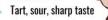
Lewis

- Acids accept electron pairs
- Bases donate electron pairs

$pH = -log [H^+]$

$$pOH = -log[OH^{-}]$$

$$[H^+] = 10^{-pH}$$


 $[OH^{-}] = 10^{-pOH}$

$$pH + pOH = 14$$

$$[H^+][OH^-] = 1 \times 10^{-14}$$

PROPERTIES OF ACIDS AND BASES

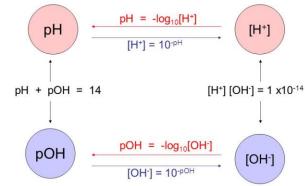
- They are electrolytes Conduct electricity
- React with Metals
- Common as aqueous and liquids

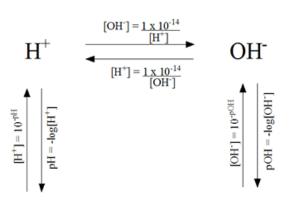
- **Cleaning products**
- Bitter tasting
- Slippery to the touch Common as Solids

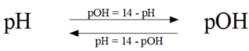
Arrhenius

- Acids make H+ ions in aqueous solutions
- Bases make OH ions in solution

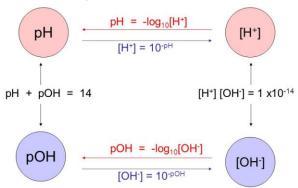
Bronsted-Lowry

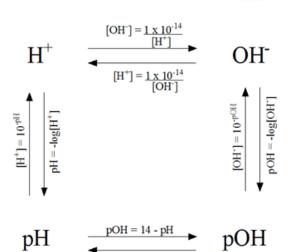

- Acids donate protons
- Bases accept protons


Lewis


- Acids accept electron pairs
- Bases donate electron pairs

pH = -log [H ⁺]	pOH = -log [OH ⁻]
[H ⁺] = 10 ^{-pH}	[OH ⁻] = 10 ^{-pOH}
pH + pOH = 14	
[H ⁺][OH ⁻] = 1 x 10 ⁻¹⁴	


pH Calculations



pH Calculations

pH = 14 - pOH